1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
//! This project consists of articles, data structures, algorithms and solutions to common problems.
//!
//! # Sorting algorithms
//!
//! Algorithm | Best case | Average case | Worst case | Auxiliary space
//! :-------- | :-------: | :----------: | :--------: | :-------------:
//! Selection sort | O(n^2) | O(n^2) | O(n^2) | O(1)
//! Insertion sort | O(n) | O(n^2) | O(n^2) | O(1)
//! Merge sort | O(n log n) | O(n log n) | O(n log n) | O(n)
//! Quick sort | O(n log n) | O(n log n) | O(n^2) | O(log n)
//!
//! # Data structures
//!
//! Always choose your data structures carefully. Look below for guidance.
//!
//! ### Indexing performance
//!
//! Indexing is the act of accessing an arbitrary element in the data structure.
//! This is usually achieved with `[]` in Rust.
//!
//! Data structure | Average case | Worst case
//! :------------: | :----------: | :--------:
//! HeapArray | O(1) | O(1)
//! ArrayList | O(1) | O(1)
//!
//! ### Search performance
//!
//! Searching is the act of finding an arbitrary element within the data structure.
//! This is usually achieved with a method such as `contains()`, `get()` or similar.
//!
//! Data structure | Average case | Worst case
//! :------------: | :----------: | :--------:
//! HeapArray | O(n) | O(n)
//! ArrayList | O(n) | O(n)
//!
//! ### Insertion performance
//!
//! Insertion is the act of inserting an element at an arbitrary position within the data structure.
//! This is usually achieved with a method such as `insert()`, and there is sometimes a `push()`
//! for inserting at the end of the data structure given it makes sense.
//!
//! Data structure | Best case | Average case | Amortized | Worst case
//! :------------: | :-------: | :----------: | :-------: | :--------:
//! HeapArray[1] | N/A | N/A | N/A | N/A
//! ArrayList[2] | O(1) | O(n) | O(n - index) | O(n)
//!
//! [1]: HeapArray is fixed-size thus this function is not available.
//!
//! [2]: ArrayList's insertion performance depends on the index you add an element to.
//! Adding to the end of the list is `O(1)` while adding to the front is `O(n)`, because all the prior elements would have to be moved forward.
//!
//! Further more, if the capacity of the list is exceeded, it will be `O(n)` as the entire list has to be reallocated.
//!
//! ### Deletion performance
//!
//! Deletion is the act of removing an element from the data structure. This is usually achieved with
//! a method such as `remove()`.
//!
//! Data structure | Best case | Average case | Amortized | Worst case
//! :------------: | :-------: | :----------: | :-------: | :--------:
//! HeapArray[1] | N/A | N/A | N/A | N/A
//! ArrayList[2] | O(1) | O(n) | O(n - index) | O(n)
//!
//! [1]: HeapArray is fixed-size thus this function is not available.
//!
//! [2]: ArrayList's deletion performance depends on the index you delete an element from. Deleting from the end of the list is `O(1)` while deleting from the front is `O(n)`, because all the prior elements would have to be moved backward.
//!
//! ### Space complexity
//!
//! Space complexity defines how much memory is necessary to represent the data structure.
//!
//! Data structure | Space complexity
//! :------------: | :----------:
//! HeapArray | O(n)
//! ArrayList | O(n)

#![doc(html_root_url="https://kaisellgren.github.io/doc")]
#![allow(unstable)]
#![allow(unused_imports)]
#![allow(dead_code)]
#![feature(unsafe_destructor)]

extern crate rand;
extern crate test;
extern crate core;
extern crate alloc;
extern crate serialize;

pub mod algorithms;
pub mod data_structures;
pub mod programs;

fn assert_sorted<T: Ord>(data: &[T]) {
    let mut index = 1;
    while index < data.len() {
        assert!(data[index - 1] <= data[index]);
        index += 1;
    }
}

/// Removes duplicate entries from Vec with a complexity of O(n log n + n) I believe (TODO).
///
/// This technique sorts the vector before removing the duplicates and thus is not stable.
pub fn remove_duplicates_by_sorting<'a, A: PartialEq + Ord>(data: &'a mut Vec<A>) {
    algorithms::quick_sort::quick_sort(data.as_mut_slice());

    let mut current_index = 0;

    while current_index < data.len() - 1 {
        if &data[current_index] == &data[current_index + 1] {
            data.remove(current_index + 1);
            continue;
        }

        current_index += 1;
    }
}

/// Removes duplicate entries from Vec with a complexity of O(n(n+1)/2).
///
/// It is based on the dual pointer technique where ´current´ iterates as usual,
/// but ´runner´ iterates until it hits the ´current´, and then ´current´ proceeds.
pub fn remove_duplicates_with_dual_pointers<'a, A: PartialEq>(data: &'a mut Vec<A>) {
    let mut current_index = 0;

    while current_index < data.len() {
        let mut runner_index = 0;
        while runner_index < current_index {
            if &data[runner_index] == &data[current_index] {
                data.remove(current_index);
                current_index -= 1;
                break;
            }

            runner_index += 1;
        }

        current_index += 1;
    }
}

/// Finds the position of the key within the given slice.
///
/// This is a O(log n) on average and at worst, O(1) at best.
/// Note: the given slice must be ordered.
pub fn binary_search<A: Ord>(data: &[A], key: A) -> usize {
    fn accumulator<A: Ord>(data: &[A], key: A, offset: usize) -> usize {
        let middle = data.len() / 2;

        if data[middle] > key {
            accumulator(data.slice_to(middle), key, offset)
        } else if data[middle] < key {
            accumulator(data.slice_from(middle), key, offset + middle)
        } else {
            middle + offset
        }
    };

    accumulator(data, key, 0)
}

#[test]
fn test_binary_search() {
    let stuff = vec![0u8, 2, 4, 6, 8, 9, 10];
    assert_eq!(1, binary_search(stuff.as_slice(), 2u8));
}

#[test]
fn test_remove_duplicates_with_dual_pointers() {
    let mut v = vec![1u32, 2, 3, 4, 5, 4, 3, 2, 1, 0];
    remove_duplicates_with_dual_pointers(&mut v);
    assert_eq!(v, vec![1u32, 2, 3, 4, 5, 0]);
}

#[test]
fn test_remove_duplicates_by_sorting() {
    let mut v = vec![1u32, 2, 3, 4, 5, 4, 3, 2, 1, 0];
    remove_duplicates_by_sorting(&mut v);
    assert_eq!(v, vec![0u32, 1, 2, 3, 4, 5]);
}